Vous etes bien chez Ken Yoshida. Soyez la bienvenue!!




Ken-ichi YOSHIDA, Ph.D.

  Professor of Applied Microbiology
  Department of Science, Technology and Innovation
  Graduate School of Science, Technology and Innovation
  Kobe University
  1-1 Rokkodai, Nada, Kobe 657-8501 Japan

  phone: +81 78 803 5891
  fax: +81 78 803 5891
  e-mail: kenyoshi(AT)kobe-u.ac.jp (please change (AT) to @)
  portable phone: +81 90 4279 6263

HONOUR: Awarded a prize for "Encouragement of Young Scientists" from the Japan Society for Bioscience, Biotechnology, and Agrochemistry (2002).

HONOUR: Program Officer, Scientific Research Senior Specialist, Research Promotion Bureau, Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (August 2005).

HONOUR: Awarded a prize for "Excellent papers" from the Japan Society for Bioscience, Biotechnology, and Agrochemistry (2008).

HONOUR: Awarded a prize for "Excellent papers" from the Japan Society for Bioscience, Biotechnology, and Agrochemistry (2014).

<Personal data> <Research experiences>

<Teaching experiences> <List of presentations>

<List of publications>

go back to Top page

Personal data

Name: Ken-ichi Yoshida

Position: Professor

Affiliation: Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo-ken 657-8501 Japan.

Place of birth: Kamigyo-ku, Kyoto, Japan.

Date of birth: 3rd July, 1964.

Education:

Entered Hyogo Prefectural Takarazuka Senior High School, April, 1980, and graduated March, 1983.

Entered Faculty of Agriculture, Kyoto University, April, 1983, and graduated March, 1987, with degree of Bachelor of Agriculture.

Obtained an M.S. ("Nougaku Shushi", literal translation is Master of Agriculture) March, 1989.

Received a Ph.D. ("Hakase (Nougaku)", literal translation is Doctor of Agriculture) November, 1993 from Kyoto University for a thesis entitled: "Analysis of active regions of insecticidal proteins of Bacillusthuringiensis var. israelensis".

Membership:

The Japan Society for Bioscience, Biotechnology, and Agrochemistry; the Molecular Biology Society of Japan; American Society for Microbiology.

go back


Research experiences

Assistant professor--Department of Biotechnology, Faculty of Engineering, Fukuyama University. Bacillus subtilis genome sequencing project, to obtain a large genomic sequence of 177 kb region from the gnt to sacXY loci. Analysis of regulation of the gnt operon for gluconate catabolism of B. subtilis. Analysis of gene organization and regulation of the iol operon for inositol catabolism of B. subtilis. (April, 1990 to March, 1996; April, 1997 to March, 1999).

Postdoctoral research fellow--INRA, Genetique Microbienne (directed by Dr. S. D. Ehrlich), Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France. B. subtilis genome functional analysis project. Establishment and application of the techniques for targeted gene inactivation and transcription analysis. (April, 1996 to March, 1997).

Associate professor (Lecturer)--Department of Biotechnology, Faculty of Engineering, Fukuyama University. B. subtilis genome functional analysis project. Analysis of the three asparagine synthetase genes predicted within the B. subtilis genome after the whole genome sequencing. Transcriptome analysis of B. subtilis using the DNA microarray-chip technology. Analysis of a putative ABC transporter of B. subtilis involved in acetoin catabolism. (April, 1999 to March, 2002).

Associate professor (from April, 2003)--Department of Biotechnology, Faculty of Lifescience and Biotechnology, Fukuyama University. B. subtilis genome functional analysis project. Analysis of the three asparagine synthetase genes predicted within the B. subtilis genome after the whole genome sequencing. Transcriptome analysis of B. subtilis using the DNA microarray-chip technology. Analysis of a putative ABC transporter of B. subtilis involved in acetoin catabolism. (April, 2002 to March 2004).

Associate professor (from April, 2004)--Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University. Inositol catabolism in B. subtilis 168 and Sinorhizobium fredii USDA191. Analysis of the three asparagine synthetase genes predicted within the B. subtilis genome after the whole genome sequencing. Reverse genetics of drug resistance genes in B. subtilis genome. Induction of nodulation genes of S. fredii USDA191 provoked by flavonoids released from soybeans. Regulation mechanism in activation of aryl hydrocarbon receptor (dioxin receptor) in Hepa 1c1c cells. Translocation of GLUT4 for glucose uptake in 3T3-L1 adipose cells and L1 muscle cells provoked by polyphenols.

Full professor (from December, 2009)--Department of Agrobioscience, Graduate School of Agriculture, Kobe University. Inositol catabolism and its appication to produce rare stereoisomers in B. subtilis 168. Translocation of GLUT4 for glucose uptake in muscle cells provoked by inositols. Physiology of inositol synthesis found in Rhizobia. Accumulation mechanism of poly-beta-hydroxybutyrate in Bradyrhizobium japonicum. Construction of tailor-made celulosomes displayed on the cell surface of B. subtilis. Hyper-secretion of phytase from B. subtilis. Hyper-production of acetoin and 2,3-butanediol by genetically manipulated B. subtilis. Inositol metabolism in a thermophile Geobacillus kaustophilus. Synthetic biology in B. subtilis; designing flexible promoters turned on/off at any time.

Full professor (from April, 2016)--Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation, Kobe University. Inositol catabolism and its appication to produce rare stereoisomers in B. subtilis 168, including NADPH regeneration. Cancelation of CcpA-dependent catabolite repression in B. subtilis involving hyper-phosphorylation of DegU. Physiology of inositol synthesis found in Rhizobia. Accumulation mechanism of poly-beta-hydroxybutyrate in Bradyrhizobium japonicum. Construction of tailor-made celulosomes displayed on the cell surface of B. subtilis. Hyper-secretion of phytase from B. subtilis. Hyper-production of acetoin and 2,3-butanediol by genetically manipulated B. subtilis. Inositol metabolism and its regulation involving a Crh homolog in a thermophile Geobacillus kaustophilus. Synthetic biology in B. subtilis; designing flexible promoters turned on/off at any time. In vitro study on artificially reproduced human intestinal microbiota. Genomic and proteomic analysis on a plant growth promoting (soybean nodulation enhancing) bacillus.

go back


Teaching experiences

Assistant professor (from April, 1990 to March, 1996; and from April, 1997 to March, 1999)--Department of Biotechnology, Faculty of Engineering, Fukuyama University. Three technical courses for undergraduate students; Basic techniques for biotechnology, Basic techniques for microbiology, Applied microbiology (fermentation). Thesis adviser for seven M.S.

Associate professor (Lecturer) (from April, 1999 to March, 2002)--Department of Biotechnology, Faculty of Engineering, Fukuyama University. Three technical courses for undergraduate students; Basic techniques for biotechnology, Basic techniques for microbiology, Applied microbiology (fermentation). Four classes for undergraduate students; English reading, Microbiology, Computer operations (Bioinformatics), Genome analysis. One class for M.S.; Advanced applied microbiology. Thesis adviser for seven M.S. and one Ph.D.

Associate professor (from April, 2003 to March , 2004)--Department of Biotechnology, Faculty of Lifescience and Biotechnology, Fukuyama University. Three technical courses for undergraduate students; Basic techniques for biotechnology, Basic techniques for microbiology, Applied microbiology (fermentation). Four classes for undergraduate students; English reading, Biology II (Biochemistry), Microbiology, Computer operations (Bioinformatics), Metabolic Pathways, Genome analysis. One class for M.S.; Advanced applied microbiology. Thesis adviser for four M.S. and one Ph.D..

Associate professor (from April, 2004 to November, 2009)--Department of Bio-functional Chemistry, Faculty of Agriculture, Kobe University. Two regular classes for undergraduate (Genome analysis, and Scientific English reading), one for M.S. (Microbial genome analysis), and one for D.C. (Advanced applied microbiology). Thesis adviser for one Ph.D. and a number of M.S. in Prof. Hitoshi Ashida's lab.

Full professor of Applied Microbiology (from December, 2009 to date)--Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University. Four regular classes for undergraduate (General microbiology, Applied microbiology, Genome analysis, and Scientific English reading), one for M.S. (Microbial genome analysis), and one for D.C. (Advanced applied microbiology). Thesis supervisor of one M.S. and one Ph.D. (2009), two M.S. (2010), three M.S. (2011), one Ph.D. and three M.S. (2012), and two Ph.D. and seven M.S (2013).

go back


List of presentations

International Conferences:

1. Fujita, Y., Yoshida, K., Miwa, Y., Seki, S., and Fujimura, M. "Progress in sequencing of the sacXY(333°)-gnt(344°) region from B. subtilis chromosome." "Bacillus subtilis sequencing & Gene expression" meeting of the Biotechnology Program of the EU. INRA Jouy-en-Josas, Jouy-en-Josas, France. (24-26 November, 1994)
2. Yoshida, K., Miwa, Y., Fujimura, M., and Fujita, Y. "DNA sequencing of the sacXY(333°)-gnt(344°) region of the B. subtilis chromosome." 8th international conference on Bacillii. Stanford, CA. (8-12 July, 1995)
3. Yoshida, K., Shibayama, T., and Fujita, Y. "Structure and regulation of the iol operon of Bacillus subtilis." 9th international conference on Bacilli. UniversitEde Lausanne, Lausanne, Switzerland. (15-19 July, 1997)
4. Yoshida, K., and Fujita, Y. "Unique interaction of the iol repressor with its binding sites for regulation of the Bacillus subtilis iol divergon." International conference on Bacilli, Japan. Senri-chuo, Osaka, Japan. (12-15 July, 1998)
5. Yoshida, K., Ehrlich, S.D., Yamamoto, M., Nagakawa, E., and Fujita, Y. "Function analysis of the genes in the gnt-sacXY region of the Bacillus subtilis genome." European commission 6th European Bacillus subtilis gene function analysis meeting. University of Bayreuth, Bayreuth, Germany. (20-23 November, 1998).
6. Fujita, Y., Yoshida, K., Yamamoto, M., and Yamamoto, Y. "Basic characterization of integrational mutants and first level test on carbon source utilization and catabolite repression." 6th European meeting on systematic analysis of Bacillus subtilis genes. Dourdan, France. (1-4 May, 1999).
7. Yoshida, K., Fujita, Y., and Ehrlich, S.D. "Three asparagine synthetase genes of Bacillus subtilis." 10th international conference on Bacilli. Grand hotel Dino, Baveno, Itali. (27 June-1 July, 1999).
8. Yoshida, K., Yamaguchi, H., Matsunaga, M., Ogura, M., Tanaka, T, and Fujita, Y. "Transcriptome analysis of Bacillus subtilis by DNA microarray technique." 2nd Bacell network meeting. Greifswald, Germany. (6-8 October, 2000).
9. Yoshida, K., Tsurusaki, K., and Fujita, Y. "Identification of the unspecified gene products involved in inositol catabolism of Bacillus subtilis." International symposium, Functional Genomics of Bacillus subtilis. Rikkyo University, Tokyo, Japan (26-27 January, 2001).
10. Yoshida, K., Tsurusaki, K., and Fujita, Y. "Identification of the unspecified gene products involved in inositol catabolism of Bacillus subtilis." 11th International Conference on Bacilli, Functional Genomics of Gram-Positive Microorganisms. San Diego, CA (24-28 June, 2001).
11. Yoshida, K., Yamaguchi, H., and Fujita, Y. "Genome-wide screening of direct-targets of TnrA, a transcription factor for global nitrogen regulation in Bacillus subtilis." BACELL 2002 Meeting. Paterswolde, The Netherlands (3-7 May, 2002).
12. Yoshida, K., and Fujita, Y. "Systematic strategy to identify targets of unknown HTH regulators of Bacillus subtilis." 12th International Conference on Bacilli, Functional Genomics of Gram-pisitive Microorganisms, Baveno, Italy (22-27 June, 2003).
13. Yoshida, K. "Systematic strategy to identify targets of unknown HTH regulators of Bacillus subtilis." International Workshop for Escherichia coli towards New Biology in the 21st Century (15-17 October, 2003).
14. Yoshida, K. Igarashi, K., Morinaga, T., Kobayashi, K., Ashida, H., and Fujita, Y. "Transcription of Bacillus subtilis asnH operon under the dual control of AbrB and CodY is stabilized by the 5'-untranslated region of its own transcript containing a long sequence triplication." 13th International Conference on Bacilli, Functional Genomics of Gram-pisitive Microorganisms, San Diego, CA (12-16 June, 2005).
15. Yoshida, K., Kinehara, M., Ikeuti, M., Kurimoto, E., Kim, W.-S., Krishnan, H.B., and Ashida, H. "Functional analysis of NodD transcription factor paralogs of Shinorhizobium fredii USDA191 involved in regulation of the nodulation genes. Rikkyo international symposium "From bacteria to organelle", Tokyo (26 August, 2005).
16. "Functional analysis of NodD transcription factor paralogs of Sinorhizobium fredii USDA191 involved in regulation of the nodulation gene" 7th European Nitrogen Fixation Conference, Arhus, Denmark. (22-26 July, 2006).
17. "Promising application of inositol catabolism in Bacillus subtilis: Production of a drug candidate and a health-promoting food" BACELL 2007, Het Kasteel, Groningen, The Netherlands. (22 March, 2007).
18. "Genetic Modification of Bacillus subtilis for Production of D-chiro-Inositol, an Investigational Drug Candidate for Type 2 Diabetes and Polycystic Ovary Syndrome" I4th Conference on Functional Genomics of Gram-Positive Microorganisms; 14th International Conference on Bacilli, Green Park Hotel, Tirrenia (Pisa), Italy (24-28 June, 2007).
19. “Daidzein transforms Sinorhizobium fredii USDA191 NodD1 into its activated mode with enhanced solubility and stability.” the 8th European Nitrogen Fixation Conference, Aula Academia, Ghent, Belgium (30 August-3 September, 2008)
20. “Reverse Genetics of Bacillus subtilis: Identification of inositol catabolic genes and its promising applications” BACELL2009, Lumbye Hall in Tivoli, Copenhagen, Denmark (21-22 April, 2009).
21. Yoshida, K., "2’,3’,4’-Trihydroxy-2-phenylacetophenone derivatives, a novel and potent class of anti-Gram-positive antibacterial agents" 5th Conference on Functional Genomics of Gram-Positive Microorganisms; 15th International Conference on Bacilli, San Diego, CA (14-18 June, 2009).
22. Yoshida, K., "Identification of three functional inositol dehydrogenases of Geobacillus kaustophilus HTA426 encoded by a single operon" BACELL 2010, Pasteur Institute, Paris, France (24-25 March, 2010).
23. Yoshida, K., "Transcription profiling of Bradyrhizobium japonicum phb/pha paralogs involved in intracellular accumulation of poly-b-hydroxybutyrate" 9th European Nitrogen Fixation Conference, Geneva, Switzerland. (6-10 September, 2010).
24. Yoshida, K., "Expression analysis of redundant phb paralogs for poly-β-hydroxybutyrate metabolism in Bradyrhizobium japonicum USDA110" 1st Asian Conference on Plant-Microbe Symbiosis and Nitrogen Fixation, Miyazaki, Japan (20-24 September, 2
25. Yoshida, K., "Bacillus subtilis cell factory for production of scyllo-inositol promising for Alzheimer’s disease. The 90th Anniversary Meeting, The Society for Biotechnology, Japan. International Symposium on Biotechnology for Green Growth. Kobe, JP. (24-26 October, 2012).
26. Yoshida, K., "Natural interconversion of inositol stereoisomers in bacteria? BACELL2011, Göttingen, DE. (14-15 March, 2011).
27. Yoshida, K., "Bacillus subtilis possesses two distinct triosephosphate isomerases" University of Newcastle, Newcastle upon Tyne, United Kingdom. (10-11 April, 2013).
28. Chisato Nakagawa, Kosei Tanaka, Shinji Takenaka, and Ken-ichi Yoshida. Bacillus subtilis iolH encodes an additional triosephosphate isomerase. 7th International Conference on Gram-positive Microorganisms, Montecatini Terme, Tuscany, Italy. (23-27June, 2013).
29. K. Yoshida, A. Motokubota, K. Tanaka, and S. Takenaka. Poly-β-hydroxybutyrate (PHB) accumulation in Bradyrhizobium japonicum depends on proteins referred to as phasins. BioMicroWorld 2013. Mardid, Spain. (2-4 October, 2013).
30. Tanaka, K., Onuma, C., Takenaka, S., and Yoshida. K. Efficient bioconversion of myo-inositol to scyllo-inoshitol by genetically modified Bacillus subtilis requires global metabolic change to improve NADPH regeneration. 7th International Conference on Gram-positive Microorganisms, Montecatini Terme, Tuscany, Italy. (23-27June, 2013).
31. K. Yoshida, Y. Ashida, A. Terakawa, A. Motokubota, L. Sauviac, and C. Bruand. Physiological significance of possible myo-inositol synthesis in Sinorhizobium meliloti. 18th International Congress on Nitrogen Fixation. Miyazaki, JP. (14-18 October, 2013).
32. K. Yoshida, Y. Inositol dehydrogenases in Geobacillus kaustophilus are regulated by a Crh homolog but not by glucose. BACELL2014. Bratislava, Slovakia. (29-30 April, 2014).
33. K. Tanaka, Y. Toya, H. Takenaka, H. Shimizu, and K. Yoshida. Bacterial cell factory for production of scyllo-inositol, a potential therapeutic agent for Alzheimer’s disease. Metabolic Engineering X. Cancouver, Canada. (15-19 June, 2014)
34. K. Tanaka, Y. Toya, S. Takenaka, H. Shimizu, and K. Yoshida. A Bacillus subtilis cell factory efficiently converting myo-inositol into scyllo-inositol, a potential therapeutic agent for Alzheimer's disease. IUMS2014, Montreal, Canada (27 July-1 August, 2014)
35. K. Yoshida, A. Motokubota, L. Sauviac & C. Bruand. To be, or not to be: that is the question. - myo-inositol in Sinorhizobium meliloti. The 11th European Nitrogen Fixation Conference, Tenerife, Spain (7-10 September, 2014)
36. K. Tanaka, S. Takenaka, O. Chumsakul, S. Ishikawa, N. Ogasawara, K. Yoshida. “Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.” BACELL 2015, Amsterdam, the Netherlands (14-15 April, 2015).
37. K. Tanaka, A. Natsume, S. Takenaka, K. Yoshida. “Bacillus subtilis cell factory engineered for efficient bioconversion of myo-inositol into scyllo-inisitol, a therapeutic agent for Alzheimer’s disease.” International Conference on Metabolic Engineering in Bacteria, Amsterdam, the Netherlands (16-17 April, 2015).
38. K. Tanaka, T. Morimoto, T. Hasunuma1, S.Takenaka, O. Chumsakul, S. Ishikawa, N. Ogasawara, and K. Yoshida. “Hyperphosphorylation of DegU interferes CcpA-dependent catabolite repression of rocG in Bacillus subtilis.” 8th International Conference on Gram-Positive Microorganisms, Montecatini Terme, Italy (21-25 June, 2015).
39. K. Tanaka, A. Natsume, S. Takenaka, and K. Yoshida. “A third generation of Bacillus subtilis cell factory for producing scyllo-inositol.” 8th International Conference on Gram-Positive Microorganisms, Montecatini Terme, Italy (21-25 June, 2015).
40. K. Matsuda, Y. Toya, S. Ryu, T. Morimoto, K. Sawada, F. Takahashi, K. Mahabe, Y. Kageyama, T. Hirasawa, K. Yoshida, H. Shimizu, N. Ogasawa, K. Ozaki, and H. Hagihara. “Enhanced production of bio-based chemicals by using Bacillus subtiulis genome reduced strain as a platform cell factory.” 8th International Conference on Gram-Positive Microorganisms, Montecatini Terme, Italy (21-25 June, 2015).
41. A. Natsume, K. Tanaka, S. Takenaka, and K. Yoshida. Possible common regulators of ytsJ for malic enzyme and gndA for 6-phosphogluconate dehydrogenase in Bacillus subtilis. BACELL2016. Paris, France (26 April, 2016)
42. K. Tanaka, A. Natusme, S. Takenaka, and K. Yoshida. Further improvement of Bacillus subtilis cell factory producing scyllo-inositol, a promising therapeutic agent for Alzheimer’s disease. Metabolic Engineering 11. Awaji, Japan (26-30 June, 2016)
43. S. Nishihata, K. Tanaka, S. Takanaka, and K. Yoshida. Inactivation of PhaR involved in poly-beta-hydroxybutyrate accumulation in Bradyrhizobium japonicum USDA110 and its pleiotropic effects. 12th European Nitrogen Fixation Conference. Budapest, Hungary (25-28 August, 2016).
44. K. Yoshida, K, Tanaka, S. Ishikawa, and S. Takenaka. Inositol catabolism in Geobacillus kaustophilus is repressed by Crh phosphorylated independently of glucose catabolite repression. The 2nd International Conference on Post-Translational Modifications in Bacteria, Lyon, France (19-20 October, 2016).
45. M. Kato, T. Horikawa, K. Tanaka, S. Ishikawa, and K. Yoshida. Recombinant enzyme secretion in Bacillus subtilis enhanced by customization of signal peptides. 9th Conference on Recombinant Protein Production, Dubrovnik, Croatia (23-25 April, 2017).
46. K. Yoshida, K. Tanaka, and S. Ishikawa. Geobacillus kaustophilus Crh is independent of glucose catabolite repression but represses inositol catabolic genes. 19th International Conference on Bacilli & Gram-Positive Bacteria. Berlin, Germany (11–15 June, 2017).
47. K. Yoshida. Production of rare inositols: conversion of agricultural wastes into value added products. IUMS2017, Singapore (17-21 July, 2017)
48. K. Yoshida, K. Tanaka, and S. Ishikawa. Bacillus subtilis cell factory converting phytic acid into scyllo-inositol, a therapeutic agent for Alzheimer's disease. Enzyme Engineering XXIV, Toulouse, France (24-28 September 2017)
49. M. Miyano, K. Tanaka, S. Ishikawa, S. Takenaka, A. Miguel‑Arribas, W. J. J. Meijer, and K. Yoshida. Rapid conjugative mobilization of a 100 kb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. BACELL2018. Bath, UK (12-13 June 2018)
 50. K. Yoshida. Bacillus subtilis cell factories converting agricultural wastes into scyllo-inositol. iBio-N, Nanjing, China (10-13 November 2018)
 51. H. Kawabata, S. Ishikawa, K. Tanaka, and K. Yoshida. Monitoring NADPH regeneration by luciferase luminescence in Bacillus subtilis. BACELL2019, Ljubljana, Slovenia (9-10 April 2019)
52.  K. Yoshida, and C. Michon. myo-Inositol-1-phosphate synthase “restored” in Bacillus subtilis to produce scyllo-inositol, a therapeutic agent for Alzheimer's disease, from glucose. RPP10, Crete, Greece (24-27 April 2019)
 53. K. Yoshida, C. Michon, and S. Ishikawa. Bacillus subtilis cell factory for conversion of glucose into scyllo-inositol, a therapeutic agent for Alzheimer's disease. 20th International Conference on Bacilli and Gram-Positive Bacteria, Washington, D.C. (23-26 July 2019)
 54. K. Yoshida. Monitoring NADPH levels by luciferase luminescence in Bacillus subtilis. iBio-T, Taichung, Taiwan (7-9 November 2019) (Best presentation award)
55. K. Yoshida, K. Mori, V. Verrone, S. Ishikawa, and A. Wipat. Application of the Gram-positive conjugative plasmid pLS20 for rapid and easy transformation of intra- and inter-species. FEMS Online Conference on Microbiology (online), Serbian Society of Microbiology (28-31 October 2020)

Invited seminars:

1. "Sequencing of the gnt-sacXY region (177 kb) of Bacillus subtilis genome and analysis of the iol operon." Laboratoire de Génétique Moléculaire et Cellulaire, INRA-CNRS (URA 1925)-INAPG, Thiverval-Grignon, France. (2 May, 1996).
2. "The genome sequencing project of Bacillus subtilis and its power in exploring new properties of microorganisms." Ernst-Moritz-Amdt-Uiversität Greifswald, Greifswald, Germany. (5 July, 1996).
3. "Sequencing of the gnt-sacXY region (177 kb) of Bacillus subtilis genome and analysis of the iol operon." Department of Microbiology, University of Newcastle, Newcastle upon Tyne, United Kingdom. (6 October, 1996).
4. "Reverse genetics after the whole genome sequencing: identification of a divergon involved in inositol catabolism in Bacillus subtilis and its regulation." Heidelberg Universität, Heidelberg, Germany. (24 November, 1998).
5. "An asparagine synthetase gene of Bacillus subtilis, asnO, is indispensable for sporulation." INRA, Jouy-en-Josas, France. (23 October, 2001).
6. "Reverse genetics of Bacillus subtilis." Department of Microbiology, University of Newcastle, Newcastle upon Tyne, United Kingdom. (2 May, 2002).
7. "Reverse genetics of Bacillus subtilis: Identification of functions of the genes involved in inositol catabolism." INRA-Grignon, France. (19 June, 2003).
8. "Systematic strategy to identify targets of unknown HTH regulators of Bacillus subtilis." INRA, Jouy-en-Josas, France. (20 June, 2003).
9. "Reverse genetics of Bacillus subtilis after the whole genome sequencing: crossing-over genetics, biochemistry, and bioinformatics" Graduate School of Nagoya Univ. Japan (13-14 September, 2004).
10. "Functional analysis of NodD transcription factor paralogs of Shinorhizobium fredii USDA191 involved in regulation of the nodulation genes." Dept. of Agronomy and Plant Genetic Research Unit, USDA-ARS, Univ. of Missouri, Columbia, MO. (20 June, 2005).
11. "Functional analysis of NodD transcription factor paralogs of Sinorhizobium fredii USDA191 involved in regulation of the nodulation gene" INRA-CNRS, Laboratoire des Interactions Plantes-Microorganismes, Toulouse, France. (28 July, 2006).
12. "Promising application of inositol catabolism in Bacillus subtilis: Production of a drug candidate and a health-promoting food" DSM Nutritional Products, Kaiseraugst Switzerland. (22 June, 2007).
13. "Functional analysis of NodD transcription factor paralogs of Sinorhizobium fredii USDA191 involved in regulation of the nodulation gene" Lyon Univ. (29 June, 2007).
14. "Promising application of inositol catabolism in Bacillus subtilis: Production of a drug candidate and a health-promoting food" GBB, Univ. of Groningen, The Netherlands. (5 November, 2007).
15. "Promising application of inositol catabolism in Bacillus subtilis" INRA, Jouy-en-Josas, France. (7 April, 2008).
16. "Discovery of novel 2’,3’,4’-trihydroxy-2-phenylacetophenone derivatives as anti-Gram-positive antibacterial agents" Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom. (28 Augst, 2008).
17. "Reverse genetics of Bacillus subtilis: Characterization and application of inositol catabolism" Wayne State University, Detroit, USA. (22 June, 2009).
18. "Inositols for Health Promotion" Quay West Resort, Bunker Bay, West Australia, Australia. (30 April, 2010).
19. "Innovative Bio-production Kobe: how Bacilli contribute to the project" INRA, Jouy-en-Josas, France. (13 September, 2010)
20. "Engineered Bacilli systems in the Innovative Bio-production Kobe (iBioK) project" Groningen University, the Netherlands. (25 November, 2010)
21. “Possible myo-inositol synthesis in Sinorhizobium meliloti” Le Laboratoire des Interactions Plantes-Microrganismes, CNRS-INRA, Toulouse, France. (12 April, 2013)
22. “Bacillus subtilis cell factory for production of rare inositols” Centro de Biologia Molecular "Severo Ochoa". CSIC-Universidad Autónoma Madrid, Spain. (4 October, 2013)
23. “Possible inositol synthesis in rhizobia with physiological significance?” One day workshop in "Lessons from interaction between plant and microbe: strategies in symbiosis and competition". Kobe University Brussels European Centre, BE. (12 Novembre, 2013).
24. “To be, or not to be: that is the question. (Inositol in bacteria)” Micalis, INRA Jouy-en-Josas, France. (15 November, 2013).
25. “Inositol metabolism in Bacillus subtilis and Geobacillus kaustophilus” Georg-August-Universität Göttingen, Göttingen, Germany (2 May 2014).
26. “Inositol metabolism in Bacillus subtilis and Geobacillus kaustophilus” California State University, Stanislaus (25 July, 2014).
27. “Beyond CcpA-mediated catabolite repression in gram-positive bacteria” Micalis, INRA Jouy-en-Josas, France. (17 November, 2014).
28. “Inactivation of PhaR involved in poly-beta-hydroxybutyrate accumulation in Bradyrhizobium japonicum USDA110 and its pleiotropic effects” Lyon Univ. (18 October, 2016).
29. “Recombinant enzyme secretion in Bacillus subtilis enhanced by customization of signal peptides” Institut für Systembiotechnologie, Universität des Saarlandes (16 June, 2017).
30. “Recombinant enzyme secretion in Bacillus subtilis enhanced by customization of signal peptides” National University of Singapore (19 July, 2017)
31. “Bacillus subtilis cell factory converting agricultural wastes into rare inositol isomer” Micalis, INRA Jouy-en-Josas, France. (22 September, 2017).
 32. “Bacillus subtilis Cell Factories for Production of scyllo- Inositol, a Therapeutic Agent for Alzheimer's Disease, from Agricultural Waste” The Korean Society for Microbiology and Biotechnology 2019, Jeju, South Korea (23-26 June 2019)
 33. “Artificial Microbiota as a Disruptive Biomedical Testbed” Future trends in synthetic biology: asian perspectives, Singapore (11-12 October 2019)

go back


List of publications

1. Kobayashi, S., Yoshida, K., Ueda, K., Sakai, H., and Komano, T. (1988) DNA damage caused by ascorbate in the presence of Cu2+ induces mutations. Nucleic Acids Res., Symposium Series 19, 29-32.
2. Yoshida, K., Matsushima, Y., Sen, K., Sakai, H., and Komano, T. (1989) Insecticidal activity of a peptide containing the 30th to 695th amino acid residues of the 130-kDa protein of Bacillus thuringiensis var. israelensis. Agric. Biol. Chem. 53, 2121-2127.
3. Yoshida, K., Sen, K., Sakai, H., and Komano, T. (1989) Expression of the two 130-kDa protein genes of Bacillus thuringiensis var. israelensis in Bacillus subtilis. Agric. Biol. Chem. 53, 3033-3035.
4. Fujita, Y., Shindo, K., Miwa, Y., and Yoshida, K. (1991) Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli. Gene 108, 121-1255.
5. Komano, T., Yoshida, K., Sen, K., and Sakai, H. (1992) "Expression of insecticidal protein genes of Bacillus thuringiensis in bacteria" In Industrial Biotechnology (Malik, V. S. and Sridhar, P., eds) Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, p.231-236.
6. Yoshisue, H., Yoshida, K., Sen, K., Sakai, H., and Komano, T. (1992) Effects of Bacillus thuringiensis var. israelensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coli. Biosci. Biotech. Biochem. 56, 1429-1433.
7. Yoshida, K., Fujita, Y., Mukai, E., Sen, K., Himeno, M., Sakai, H., and Komano, T. (1993) Importance of the central region of 130-kDa insecticidal proteins of Bacillus thuringiensis var. israelensis for their activity in vivo and in vitro. Biosci. Biotech. Biochem. 57, 584-590.
8. Yoshida, K., Fujita, Y., Mukai, E., Sen, K., Himeno, M., Sakai, H., and Komano, T. (1993) Binding of an engineered 130-kDa insecticidal protein of Bacillus thuringiensis var. israelensis to insect cell lines. Biosci. Biotech. Biochem. 57, 1200-1201.
9. Yoshida, K., Fujita, Y., and Sarai, A. (1993) Missense mutations in the Bacillus subtilis gnt repressor that diminish operator binding ability. J. Mol. Biol. 231, 167-174.
10. Yoshisue, H., Fukada, T., Yoshida, K., Sen, K., Krosawa, S., Sakai, H., and Komano, T. (1993) Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA. J. Bacteriol. 175, 2750-2753.
11. Yoshida, K. (1993) Analysis of active regions of insecticidal proteins of Bacillus thuringinsis var. israelensis. Doctoral thesis of Kyoto University
12. Yoshida, K., Seki, S., and Fujita, Y. (1994) Nucleotide sequence and feature of the Bacillus licheniformis gnt operon. DNA Res. 1, 157-162.
13. Yoshida, K., Sano, H., Miwa, Y., Ogasawara, N., and Fujita, Y. (1994) Cloning and nucleotide sequencing of a 15 kb region of the Bacillus subtilis genome containing the iol operon. Microbiology 140, 2289-2298.
14. Yoshida, K., Sano, H., Seki, S., Oda, M., Fujimura, M., and Fujita, Y. (1995) Cloning and sequencing of a 29 kb region of the Bacillus subtilis genome containing the hut and wapA loci. Microbiology141, 337-343.
15. Yoshida, K., Seki, S., Fujimura, M., Miwa, Y., and Fujita, Y. (1995) Cloning and sequencing of a 36 kb region of the Bacillus subtilis genome between the gnt and iol operons. DNA Res. 2, 61-69.
16. Yoshida, K., Ohmori, H., Miwa, Y., and Fujita, Y. (1995) Bacillus subtilis gnt repressor mutants that diminish gluconate-binding ability. J. Bacteriol. 177, 4813-4816.
17. Yoshida, K., Miwa, Y., Ohmori, H., and Fujita, Y. (1995) Analysis of an insertional mutation (gntOi) of the Bacillus subtilis gnt operon affecting its expression level and gntOi suppressor mutations. Mol. Gen. Genet. 248, 581-591.
18. Yoshida, K., Fujimura, M., Yanai, N., and Fujita, Y. (1995) Cloning and sequencing of a 23-kb region of the Bacillus subtilis genome between the iol and hut operons. DNA Res. 2, 295-301.
19. Yoshida, K., Shindo, K., Sano, H., Seki, S., Fujimura, M., Yanai, N., Miwa, Y., and Fujita, Y. (1996) Sequencing of a 65 kb region of the Bacillus subtilis genome containing the lic and cel loci, and creation of a 177 kb contig covering the gnt-sacXY region. Microbiology 142, 3113-3123.
20. Yoshida, K., Aoyama, D., Ishio, I., Shibayama, T., and Fujita, Y. (1997) Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J. Bacteriol. 179, 4591-4598.
21. Kunst, F., Ogasawara, Moszer, I., and 148 other authors (Yoshida, K. as the 147th author) (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249-256.
22. Fujita, Y., Yoshida, K., Miwa, Y., Yanai, N., Nagakawa, E., and Kasahara, Y. (1998) Identification and expression of the Bacillus subtilis fructose-bisphosphatase gene (fbp). J. Bacteriol. 180, 4309-4313.
23. Winstedt, L., Yoshida, K., Fujita, Y., and von Wachenfeldt, C. (1998) Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J. Bacteriol. 180, 6571-6580.
24. Yoshida, K., Shibayama, T., Aoyama, D., and Fujita, Y. (1999) Interaction of a repressor and its binding sites for regulation of the Bacillussubtilis iol divergon. J. Mol. Biol. 285, 917-929.
25. Yoshida, K., Fujita, Y., and Ehrlich, S. D. (1999) Three asparagine synthetase genes of Bacillus subtilis. J. Bacteriol. 181, 6081-6091.
26. Yoshida, K., Ishio, I., Nagakawa, E., Yamamoto, Y., Yamamoto, M., and Fujita, Y. (2000) Systematic study of gene expression and transcription organization in the gntZ-ywaA region of the Bacillus subtilis genome. Microbiology 146, 573-579.
27. Petit, M.-A., Yoshida, K., Fujita, Y., and Ehrlich, S. D. (2000) The 409 bp tandem repeat spanning genes yxaK and yxaL is absent from the Bacillus subtilis chromosome. Microbiology 146, 2091-2092.
28. Yoshida, K., Fujita, Y., and Ehrlich, S. D. (2000) An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. J. Bacteriol. 182, 5454-5461.
29. Ishii, T., Yoshida, K., Terai, G., Fujita, Y., and Nakai, K. (2001) DBTBS: a database of Bacillus subtilis promoters and transcription factors. Nucleic Acids Res. 29, 278-280.
30. Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.-M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T., and Fujita, Y. (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacilus subtilis. Nucleic Acids Res. 29, 683-692.
31. Ogura, M., Yamaguchi, H., Yoshida, K., Fujita, Y., and Tanaka, T. (2001) DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res. 29, 3804-3813.
32. Kobayashi, K., Ogura, M., Yamaguchi, H., Yoshida, K., Ogasawara, N., Tanaka, T., and Fujita, Y. (2001) Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J. Bacteriol. 183, 7365-7370.
33. Yoshida, K., Yamamoto, Y., Omae, K., Yamamoto, M., and Fujita, Y. (2002) Identification of two myo-inositol transporter genes of Bacillus subtilis. J. Bacteriol. 184, 983-991.
34. Asai, K., Yamaguchi, H., Kang, C.-M., Yoshida, K., Fujita, Y., and Sadaie, Y. (2003) DNA microarray analysis of Bacillus subtilis sigma factors of extracytoplasmic function family. FEMS Microbiol Lett. 220,155-160.
35. Kobayashi, K., Ehrlich, S. D. and 97 other authors (Yoshida, K. as the 96th author) (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A. 100,4678-4683.
36. Yoshida, K., Yamaguchi, H., Kinehara, M., Ohki, Y., Nakaura, Y., and Fujita. Y. (2003) Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol. 49,157-165.
37. Doan, T., Servant, P., Tojo, S., Yamaguchi, H., Lerondel, G., Yoshida, K., Fujita, Y., and Aymerich, S. (2003) The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology 149, 2331-2343.
38. Tojo, S., Matsunaga, M., Matsumoto, T., Kang, C.-M., Yamaguchi, H., Asai, K., Sadaie, Y., Yoshida, K., and Fujita, Y. (2003) Organization and expression of the Bacillus subtilis sigY operon. J. Biochem. 134, 935-946.
39. Yoshida, K., Yamaguchi, M., Ikeda, H., Omae, K., Tsurusaki, K., and Fujita, Y. (2004) The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase. Microbiology 150, 571-580.
40. Yoshida, K., Ohki, Y., Murata, M., Kinehara, M., Matsuoka, H., Satomura, T., Ohki, R., Kumano, M., Yamane, K., and Fujita, Y. (2004) Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH. J. Bacteriol. 186, 5640-5648.
41. Tojo, S., Satomura, T., Morisaki, K., Yoshida, K., Hirooka, K., and Fujita, Y. (2004) Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J. Bacteriol. 186, 7971-7979.
42. Aoki, Y., Hashimoto, T., Yoshida, K., and Ashida, H. (2005) Suppressive effects of catechins on differentiation of 3T3-L1 preadipocytes. In Proceedings of 2004 International Conference on O-CHA (tea) Culture and Science, The Organizing Comittie of ICOS, 547-548.
43. Kubo, M., Sakane, I., Sawamura, S., Yoshida, K., and Ashida, H. (2005) Black tea (Camellia sinensis) suppresses hyperglycemia in STZ- induced diabetic rats. In Proceedings of 2004 International Conference on O-CHA (tea) Culture and Science, The Organizing Comittie of ICOS, 561-562.
44. Fukuda, I., Sakane, I., Nishiumi, S., Shirasugi, S., Sawamura, S., Kanazawa, K., Yoshida, K., and Ashida, H. (2005) Tea has the potential to reduce the dioxin risk. In Proceedings of 2004 International Conference on O-CHA (tea) Culture and Science, The Organizing Comittie of ICOS, 594-595.
45. Harvie, D.R., Andreini, C., Cavallaro, G., Meng, W., Connolly, B.A., Yoshida, K., Fujita, Y., Harwood, C.R., Radford, D.S., Tottey, S., Cavet, J.S., and Robinson, N.J. (2006) Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Mol. Microbiol. 59, 1341-1356.
46. Yoshida, K., Yamaguchi, M., Morinaga, T., Ikeuchi, M., Kinehara, M., and Ashida, H. (2006) Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl. Environ. Microbiol. 72, 1310-1315.
47. Nishiumi, S., Hosokawa, K., Mukai, R., Fukuda, I., Hishida, A., Iida, O., Yoshida, K., and Ashida, H. (2006) Screening of indigenous plants from Japan for modulating effects on transformation of the aryl hydrocarbon receptor. Asian. Pac. J. Cancer. Prev. 7, 208-220.
48. Morinaga, T., Yamaguchi, M., Makino, Y., Nanamiya, H., Takahashi, K., Yoshikawa, H., Kawamura, F., Ashida, H., and Yoshida, K. (2006) Functional myo-inositol catabolic genes of Bacillus subtilis Natto are involved in depletion of pinitol in Natto (fermented soybean). Biosci. Biotechnol. Biochem. 70, 1913-1920.
49. Yoshida, K., Kim, W.S., Kinehara, M., Mukai, R., Ashida, H., Ikeda, H., Fujita, Y., and Krishnan, H.B. (2006) Identification of a functional 2-keto-myo-inositol dehydratase gene of Sinorhizobium fredii USDA191 required for myo-inositol utilization. Biosci. Biotechnol. Biochem. 70, 2957-2964.
50. Hirooka, K., Kunikane, S., Matsuoka, H., Yoshida, K., Kumamoto, K., Tojo, S., and Fujita, Y. (2007) Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. J. Bacteriol. 189, 5170-5182.
51. Fukuda, I., Mukai, R., Kawase, M., Yoshida, K., and Ashida, H. (2007) Interaction between the aryl hydrocarbon receptor and its antagonists, flavonoids. Biochem. Biophys. Res. Commun. 359, 822-827.
52. Yap, A., Nishiumi, S., Yoshida, K., and Ashida, H. (2007) Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnol. 55, 103-108.
53. Nishiumi, S., Yoshida, K., and Ashida, H. (2007) Curcumin suppresses the transformation of an aryl hydrocarbon receptor through its phosphorylation. Arch. Biochem. Biophys. 466, 267-273.
54. Yap, A., Nishiumi, S., Yoshida, K., and Ashida, H. (2007) Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology 55, 103-108.
55. Nishiumi, S., Yamamoto, N., Kodoi, R., Fukuda, I., Yoshida, K., and Ashida, H. (2008) Antagonistic and agonistic effects of indigoids on the transformation of an aryl hydrocarbon receptor. Arch. Biochem. Biophys. 470, 187-199.
56. Yoshida, K., Yamaguchi, M., Morinaga, T., Kinehara, M., Ikeuchi, M., Ashida, H., and Fujita, Y. (2008) myo-Inositol Catabolism in Bacillus subtilis. J. Biol. Chem. 283, 10415-10424.
57. Kada, S., Yabusaki, M., Kaga, T., Ashida, H., and Yoshida, K. (2008) Identification of two major ammonia-releasing reactions involved in secondary natto fermentation. Biosci. Biotechnol. Biochem. 272, 1869-1876.
58. Ueda, M., Nishiumi, S., Nagayasu, H., Fukuda, I., Yoshida, K., and Ashida H. (2008) Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem. Biophys. Res. Commun. 377, 2862-2890.
59. Kinehara, M., Fukuda, I., Yoshida, K., and Ashida, H. (2008) High-throughput evaluation of aryl hydrocarbon receptor-binding sites selected via chromatin immunoprecipitation-based screening in Hepa-1c1c7 cells stimulated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Genes Genet. Syst. 83, 455-468.
60. Goto, H., Kumada, Y., Ashida, H., and Yoshida, K. (2009) Discovery of novel 2',3',4'-trihydroxy-2-phenylacetophenone derivatives as anti-gram-positive antibacterial agents. Biosci. Biotechnol. Biochem. 73, 124-128.
61. Kinehara, M., Fukuda, I., Yoshida, K., and Ashida, H. (2009) Aryl hydrocarbon receptor-mediated induction of the cytosolic phospholipase A(2)alpha gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse hepatoma Hepa-1c1c7 cells. J. Biosci. Bioeng. 108, 277-281.
62. Mukai, R., Shirai, Y., Saito, N., Yoshida, K., and Ashida, H. (2009) Subcellular localization of flavonol aglycone in hepatocytes visualized by confocal laser scanning fluorescence microscope. Cytotechnology. 59, 177-182.
63. Morinaga, T., Ashida, H., and Yoshida, K. (2010) Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 156, 1538-1546.
64. Morinaga, T., Kobayashi, K., Ashida, H., Fujita, Y., and Yoshida, K. (2010) Transcriptional regulation of the Bacillus subtilis asnH operon and role of the 5'-proximal long sequence triplication in RNA stabilization. Microbiology 156, 1632-1641.
65. Asahara, T., Mori, Y., Zakataeva, N.P., Livshits, V.A., Yoshida, K., and Matsuno, K. (2010) Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl. Microbiol. Biotechnol. 87, 2195-2207.
66. Morinaga, T., Matsuse, T., Ashida, H., and Yoshida, K. (2010) Differential substrate specificity of two inositol transporters of Bacillus subtilis. Biosci. Biotechnol. Biochem. 74, 1312-1314.
67. Nishiumi, S., Yoshida, M., Azuma, T., Yoshida, K., and Ashida, H. (2010) 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs an insulin signaling pathway through the induction of tumor necrosis factor-alpha in adipocytes. Toxicol. Sci. 115, 482-491.
68. Dang, N.T., Mukai, R., Yoshida, K., and Ashida, H. (2010) D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci. Biotechnol. Biochem. 74, 1062-1067.
69. Mukai, R., Shirai, Y., Saito, N., Fukuda, I., Nishiumi, S., Yoshida, K., and Ashida H. (2010) Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Arch. Biochem. Biophys. 501, 134-141.
70. Ueda, M., Furuyashiki, T., Yamada, K., Aoki, Y., Fukuda, I., Yoshida, K., and Ashida, H. (2010): Tea catechins modulate translocation of the glucose transporter 4 in 3T3-L1 adipocytes, Food Func. 1, 167-173.
71. Nishiumi, S., Bessho, H., Kubo, M., Aoki, Y., Tanaka, A., Yoshida, K., and Ashida, H. (2010) Green and black tea suppress hyperglycemia and insulin resistance by retaining the expression of glucose transporter 4 in muscle of high-fat diet-fed C57BL/6J mice. J. Agri. Chem. 58, 12916-12923.
72. Yamaoka, M., Osawa, S., Morinaga, T., Takenaka, S., and Yoshida, K. (2011): A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease. Microb. Cell Fact. 10, 69.
73. Takenaka, S., Yoshida, N., Yoshida, K., Murakami, S., and Aoki, K. (2011): Molecular cloning and sequence analysis of two distinct halotolerant extracellular proteases from Bacillus subtilis FP-133. Biosci. Biotechnol. Biochem. 75, 148-151.
74. Suzuki, H., Takahashi, S., Osada, H., and Yoshida K. (2011): Improvement of transformation efficiency by strategic circumvention of restriction barriers in Streptomyces griseus. J. Microbiol. Biotechnol. 21, 675-678.
75. Biswas, R., Yamaoka, M., Nakayama, H., Kondo, T., Yoshida, K., Bisaria, V. S., and Kondo, A. (2011): Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl. Microb. Biotechnol. 94(3), 651-658.
76. Takenaka, S., Hano, S., Cheng, M., Yoshida, K., and Aoki, K. (2012): Organic solvent-tolerant elastase efficiently hydrolyzes insoluble, cross-linked, protein fiber of eggshell membranes. Biotechnol Lett. 34(5):949-955.
77. Yoshida, K., Sanbongi, A., Murakami, A., Suzuki, H., Takenaka, S., and Takami, H. (2012): Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology 158(8):1942-1952.
78. Suzuki, H., and Yoshida, K. (2012): Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids. J Microbiol Biotechnol. 22(9):1279-1287.
79. Suzuki, H., Murakami, A., and Yoshida, K. (2012): Counterselection System for Geobacillus kaustophilus HTA426 through Disruption of pyrF and pyrR. Appl Environ Microbiol. 78(20):7376-7383.
80. Nishiumi, S., Hosokawa, K., Anetai, M., Shibata, T., Mukai, R., Yoshida, K., and Ashida, H. (2012): Antagonistic effect of the Ainu-selected traditional beneficial plants on the transformation of an aryl hydrocarbon receptor. J Food Sci. 77(4):C420-9.
81. Suzuki, H., Murakami, A., and Yoshida, K. (2013): Motif-guided identification of a glycoside hydrolase family 1 alpha-L-arabinofuranosidase in Bifidobacterium adolescentis. Biosci Biotechnol Biochem. 77(8), 1709-1714.
82. Suzuki, H., Yoshida, K., and Ohshima, T. (2013): Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426. Appl. Environ. Microbiol. 79(17), 5151-5158.
83. Yamashita, Y., Yamaoka, M., Hasunuma, T., Ashida, H., and Yoshida, K. (2013) :Detection of Orally Administered Inositol Stereoisomers in Mouse Blood Plasma and Their Effects on Translocation of Glucose Transporter 4 in Skeletal Muscle Cells. J Agric Food Chem. 61(20), 4850-4854
84. Suzuki, H., Okazaki, F., Kondo, A., and Yoshida, K. (2013): Genome mining and motif modifications of glycoside hydrolase family 1 members encoded by Geobacillus kaustophilus HTA426 provide thermostable 6-phospho-β-glycosidase and β-fucosidase. Appl Microbiol Biotechnol. 97(7), 2929-2938.
85. Takenaka, S., Honma, Y., Yoshida, K., and Yoshida, K-i. (2013): Enantioselective N-acetylation of 2-phenylglycine by an unusual N-acetyltransferase from Chryseobacterium sp. Biotechnol Lett. 35(7), 1053-1059.
86. Kada, S., Ishikawa, A., Ohshima, Y., and Yoshida, K. (2013): Alkaline serine protease AprE plays an essential role in poly-γ-glutamate production during natto fermentation. Biosci Biotechnol Biochem. 77(4), 802-809.
87. Takenaka, S., Nomura, R., Minegishi, A., and Yoshida, K. (2013): Enrichment and characterization of a bacterial culture that can degrade 4-aminopyridine. BMC Microbiol. 13:62.
88. Yoshida, K., Takemoto, Y., Sotsuka, T., Tanaka, K., and Takenaka, S. (2013): PhaP phasins play a principal role in poly--hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum. BMC Microbiology 13, 290.
89. Tanaka, K., Tajima, S., Takenaka, S., and Yoshida, K. (2013): An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer's disease. Microb Cell Fact. 12(1), 124.
90. Takenaka. S., Yoshida, K., Tanaka, K., and Yoshida. K.-i. (2013): Molecular Characterization of a Novel N-Acetyltransferase from Chryseobacterium sp. Appl Environ Microbiol. in press.
91. Mitani, T., Kinehara, M., Yoshida, K., and Ashida, H. (2013): Aryl hydrocarbon receptor enhances the expression of multidrug-resistant mdr1b through p53 in mouse hepatoma cells. Organohalogen Compounds 75: 398-401.
92. Ueda, S., Nomoto, R., Yoshida, K., and Osawa, R. (2014): Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus. BMC Microbiol. 14: 87.
93. Yoshida, K., Motokubota, A., Tanaka, K., and Takenaka, S. (2014): Poly-β-hydroxybutyrate accumulation in Bradyrhizobium japonicum depends on proteins referred to as phasins. In "Industrial, medical and environmental applications of microorganisms. Current status and trends", Wageningen Academic Publishers, 470-475.
94. Tanaka, K., Tajima, S., Takenaka, S. and Yoshida. K. (2014): A Bacillus subtilis cell factory for producing scyllo-inositol, a disease-modifying therapeutic agent for Alzheimer’s disease. In "Industrial, medical and environmental applications of microorganisms. Current status and trends", Wageningen Academic Publishers, 636-640.
95. Bien T. L. T., Tsuji, S., Tanaka, K., Takenaka, S., and Yoshida, K. (2014): Secretion of heterologous thermostable cellulases in Bacillus subtilis. J Gen Appl Microbiol 60(5):175-182.
96. Tanaka, K., Takenaka, S., and Yoshida, K. (2014): A second-generation Bacillus cell factory for rare inositol production. Bioengineered 5(5). [Epub ahead of print]
97. Sanchez-Vizuete, P., Tanaka, K., Bridier, A., Shirae, Y., Yoshida, K., Bouchez, T., Aymerich, S., Briandet, R., and Le Coq, D. (2014): Genome sequences of two non-domesticated Bacillus subtilis strains able to form thick biofilms on submerged surfaces. Genome Announc 2(5) e00946-14.
98. Suzuki, H., Ishii, J., Kondo, A., and Yoshida, K. (2014): Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli. Biotechnol Lett in press.
99. Fukuda, I., Nishiumi, S., Mukai, R., Yoshida, K., and H. Ashida. (2014): Catechins in tea suppress the expression and activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers. Int J Food Sci Nutr in press.
100. Tanaka, K., Iwasaki, K., Morimoto, T., Matsuse, T., Hasunuma, T., Takenaka, S., Chumsakul, O., Ishikawa, S., Ogasawara, N., and Yoshida, K. (2015) Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. BMC Microbiol. 15:43.
101. Tanaka, K., Takenaka, S., and Yoshida, K. (2015) scyllo-Inositol, a Therapeutic Agent for Alzheimer’s Disease. Austin J Clin Neurol 2(4):1040.
102. Tsuji, S., Tanaka, K., Takenaka, S., and Yoshida, K. (2015) Enhanced secretion of natto phytase by Bacillus subtilis. Biosci Biotechnol Biochem. 79(11):1906-1914.
103. Takenaka, S., Miyatake, A., Tanaka, K., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Chaiyaso, T., Watanabe, M., and Yoshida, K. (2015) Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133. J Basic Microbiol. 55(6):780-789.
104. Takenaka, S., Umeda, M., Senba, H., Koyama, D., Tanaka, K., Yoshida, K., and Doi, M. (2017) Heterologous expression and characterization of the Aspergillus aspartic protease involved in the hydrolysis and decolorization of red-pigmented proteins. J. Sci. Food Agri. 97: 95–101.
105. Majidian, P., Kuse, J., Tanaka, K., Najafi, H., Zeinalabedini,M., Takenaka, S., and Yoshida, K. (2017) Bacillus subtilis GntR regulation modified to devise artificial transient induction systems. J Gen Appl Microbiol, 62(6):277-285.
106. Takagi, R., Sasaki, K., Sasaki, D., Fukuda, I., Tanaka, K., Yoshida, K., Kondo, A., and Osawa, R. (2016) A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics. PLoS One, 11(8):e0160533.
107. Terakawa, A., Natsume, A., Okada, A., Nishihata, S., Kuse, J., Tanaka, K., Takenaka, S., Ishikawa, S., and Yoshida, K. (2016) Bacillus subtilis 5’-nucleotidases with various functions and substrate specificities. BMC Microbiology, 16(1), 1-13.
108. Kang, D.-M., Tanaka, K., Takenaka, S., Ishikawa, S., and Yoshida, K. (2017) Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase. Biosci Biotechnol Biochem. 81 (5), 1026-1032.
109. Tanaka, K., Natsume, A., Ishikawa, S., Takenaka, S., and Yoshida, K. (2017) A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb Cell Fact. 16:67.
110. Sasaki, K., Sasaki, D., Okai, N., Tanaka, K., Nomoto, R., Fukuda, I., Yoshida, K., Kondo, A., Osawa, R. (2017) Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PLoS One 12(7):e0180991.
111. Kang, D-.M., Michon, C., Morinaga, T., Tanaka, T., Takenaka, S., Ishikawa, S., Yoshida, K. (2017) Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase. BMC Microbiol. 17(1):154.
112. Okai, N., Masuda, T., Takeshima, Y., Tanaka, K., Yoshida, K., Miyamoto, M., Ogino, C., and Kondo, A. (2017) Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase. AMB Express. 7(1):130.
113. Takenaka, S., Ozeki, T., Tanaka, K., and Yoshida K. (2017) Homology modeling and prediction of the amino acid residues participating in the transfer of acetyl-CoA to arylalkylamine by the N-acetyltransferase from Chryseobacterium sp. Biotechnol Lett. in press.
114. Sibponkrung, S., Kondo, T., Tanaka, K., Tittabutr, P., Boonkerd, N., Teaumroong, N., Yoshida, K. (2017) Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere. Genome Announc. 5(48). pii: e01312-17. doi: 10.1128/genomeA.01312-17.
115. Miyano, M., Tanaka, K., Ishikawa, S., Takenaka, S., Miguel-Arribas, A.,. Meijer, W. J. J., and Yoshida, K. (2017) Rapid conjugative mobilization of a 100 kb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. Microb Cell Fact. in press.
116. Ueda-Wakagi, M., Hayashibara, K., Nagano, T., Ikeda, M. Yuan,S. Ueda,S. Shirai,Y. Yoshida, K., and Ashida, H. (2018) Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways. Food Funct. 9(8):4223-4233..
117. Miyano, M., Tanaka, K., Ishikawa, S., Mori, K., Miguel-Arribas, A., Meijer, W. J. J., and Yoshida, K. (2018) A novel method for transforming the thermophilic bacterium Geobacillus kaustophilus. Microb Cell Fact. 17:127
118. Nishihata, S., Kondo, T., Tanaka, K., Ishikawa, S., Takenaka, S., Kang, CM., and Yoshida, K. (2018) Bradyrhizobium diazoefficiens USDA110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. BMC Microbiol. 18(1):156
 119. Lim, L., Senba, H., Kimura, Y., Yokota, S., Doi, M., Yoshida, K., and Takenaka, S. (2019) Influences of N-linked glycosylation on the biochemical properties of aspartic protease from Aspergillus glaucus MA0196. Process Biochem, 79:74-80
120. Yoshida, K., and Ishikawa, S. (2019) Production of scyllo-inositol: Conversion of rice bran into a promising disease-modifying therapeutic agent for Alzheimer’s disease. J Nutr Sci Vitaminol, 65: S139-S142.
121. Michon, C., Kang, C.-M., Karpenko, S., Tanaka, K., Ishikawa, S., and Yoshida, K. (2020) A bacterial cell factory converting glucose into scyllo-inositol, a therapeutic agent for Alzheimer’s disease. Commun. Biol. 3: 93.
122. Kita, K., Ishida, A., Tanaka, K., Ishikawa, S., and Yoshida. K. (2020) Complete Genome Sequence of a Thermophilic Bacterium Aeribacillus pallidus PI8. Microbiol. Resour. Announc. 9(17):e00224-20.
123. Yoshida, K. and van Dijl, J. M. (2020) Engineering Bacillus subtilis cells as factories: enzyme secretion and value-added chemical production. Biotechnol Bioproc Eng. 25:872–885.
124. Sibponkrung, S., Kondo, T., Tanaka, K., Tittabutr, P., Boonkerd, N., Yoshida, K., and Teaumroong, N. (2020) Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation. Microorganisms 7;8(5):678.
125.  Kita, K., Ishikawa, S., and Yoshida, K. (2020) Complete genome sequence of nitrogen-fixing Paenibacillus sp. strain URB8-2, isolated from the rhizosphere of wild grass. Microbiol. Resour. Announc. 9(36):e00814-20.
126. Yoshida, K., Shirae, Y., Nishimura, R., Fukui, K., and Ishikawa, S. (2021) Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. Microbiology (Reading) 167(1). doi: 10.1099/mic.0.001008. Epub 2020 Dec 15.
127. Gotoh, Y., Kita, K., Tanaka, K., Ishikawa, S., Suzuki, T., and Yoshida, K (2021) Genome sequences of two strains of Lactococcus lactis subsp. cremoris with the same ancestry but different capacity to produce exopolysaccharides. J. Gen. Appl. Microbiol. in press.